

ST. ADALBERT CATHOLIC CHURCH

SOUTH BEND, INDIANA

FROST ENGINEERING & CONSULTING

Historical Records

+ 1923 Construction begins

+ 1926
Construction completed for cost of: \$23,000

+ 1940's
Stained glass and mural installations.

+ 1952
Belltower corners rebuilt
by Schumacher & Sons

+ 1963
Belltower corners rebuilt
by Hoffer & Associates

2010s
 Cosmetic repair to
 belltower corner cracks

STEEPLES UNDER CONSTRUCTION

SANTUARY BETWEEN 1940 & 1943

Architectural Assessment

Areas of Investigation:

- North & South Belltowers inside and out
- Overall Masonry
- Damage to plaster and interior finishes
- Roofing age and damage
- Window and stained-glass Restoration & Cleaning -Wood, steel, and stone frames.
- Mural Cleaning

RENOVATION & RESTORATION

EXISTING CONDITION 2023

Overview:

- \$12-14 million total cost
- Restoration of stained-glass
- Conservation of interior artwork and decorative elements
- Mechanical and Electrical Systems upgrades
- Accessibility
 Restroom
 upgrades.

*RENDERING BY CONRAD SCHMITT STUDIOS

Roofing

Key Points:

- Roof deck repairs
- 4" of rigid roofing insulation with ice & water Shield.
- Eco star synthetic Slate
- Belltower copper roofing repairs

Masonry

Key Points:

- Brick and limestone repointing around building and inside towers
- Mortar color matching
- Limestone repair/patching
- Transept copping stone anchorage
- Fracture cracks at tower corner piers

Structural Investigation

Areas of Investigation:

- North & South Belltowers
- East & West Transept
- North Vestibule

Structural Investigation

Suspected Causes:

- Thermal Expansion
- Moisture Expansion
- Frost Expansion
- Rust Jacking
- Portland Cement Mortars
- Wind

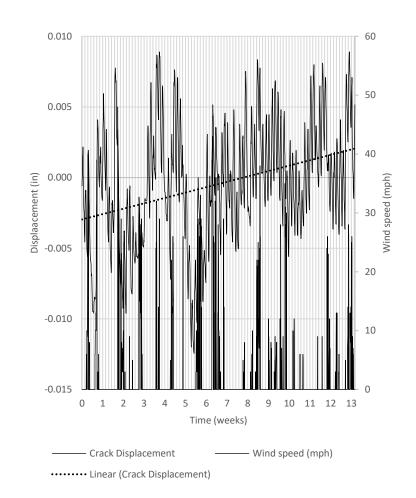
Methods:

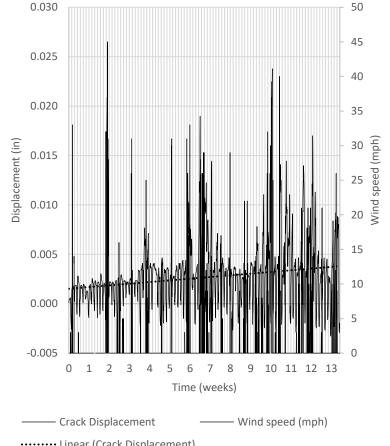
- Field Investigation
- Historical Records Survey
- Analog and Digital Monitoring
- Exterior & Interior 3D Lidar Scan
- Mortar Sampling

Design Solutions:

- Increase strength via insertion of embedded steel dowels
 - o Benefits:
 - Low visual impact
 - Increased ductility
- Decrease demands via interior truss
 - o Benefits:
 - Uniform stress redistribution
 - Redundant load path

Construction Photos



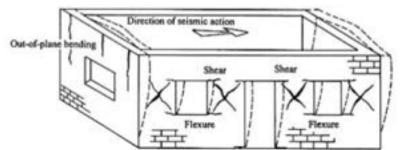


Crack & Wind Monitoring:

- Crack monitoring over the span of several months
- Retrieve wind gust data from nearby wind station (South Bend International Airport)
- Compare data to identify correlations

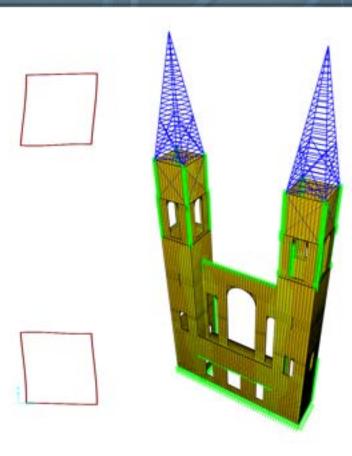
Evident correlation between wind gusts and crack openings

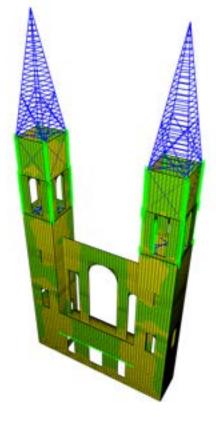



Modeling and Calibration:

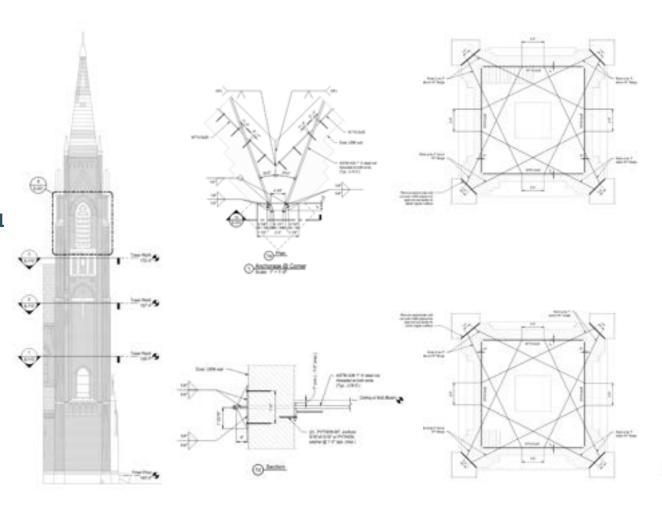
- Finite element model of the towers
- Calibration of the model based on crack/wind analysis
- Identification of the leading problem

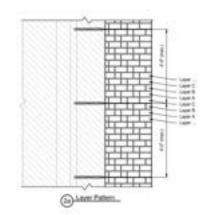
Lack of stiffness causing severe torsion

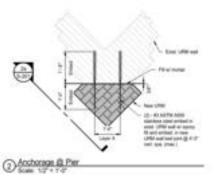



Validation:

- Reduced stresses at the corners
- Reduced deformation in the plan section
- Reduced likelihood of interior cracks
- Reconnection of the masonry piers to the structure

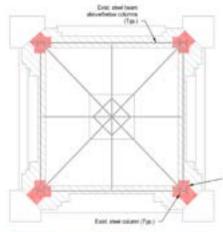

FEM results - Post-Intervention

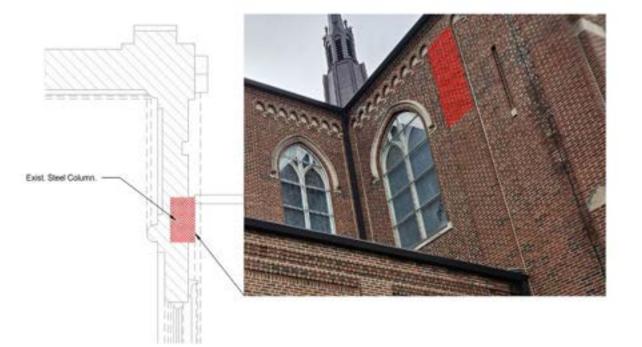




Design Solutions:

- Re-establish box-like behavior by providing stiffness at different levels
 - o Benefits:
 - Higheffectiveness/materialratio
 - Low visual impact
 - Maintaining original aesthetic
- Re-construction of the piers with improved separation
 - o Benefits:
 - Structural integrity
 - Structural isolation





Design Solutions:

- Re-tucking and repointing with lime-based mortar
 - o Benefits:
 - Increased breathability of masonry
 - Increased durability and longevity of masonry
- Sanding of corroded elements
 - o Benefits:
 - Prevent rust-jacking on masonry
 - Increased durability and longevity of steel

Construction Photos

ACKNOW LEDGMENTS

- + KIL ARCHITECTURE
- + DONALD POPIELARZ
- + FR. RYAN PIETROCARLO
- + INDIANA LANDMARKS SACRED PLACES INDIANA

